令和7年学力検査

全 日 制 課 程

第 4 時 限 問 題

理科

検査時間 13時15分から14時00分まで

「解答始め」という指示があるまで、次の注意をよく読みなさい。

注 意

- (1) 解答用紙は、この問題用紙とは別になっています。
- (2) 「解答始め」という指示で、すぐこの表紙に受検番号を書きなさい。続いて、解答用紙に氏名と 受検番号を書き、受検番号についてはマーク欄も塗りつぶしなさい。
- (3) 問題は(1)ページから(10)ページまであります。表紙の裏と(10)ページの次からは白紙になっています。受検番号を記入したあと、問題の各ページを確かめ、不備のある場合は手をあげて申し出なさい。
- (4) 余白や白紙のページは、計算などに使ってもよろしい。
- (5) 答えは全て解答用紙のマーク欄を塗りつぶしなさい。
- (6) 印刷の文字が不鮮明なときは、手をあげて質問してもよろしい。
- (7) 「解答やめ」という指示で、解答することをやめ、解答用紙と問題用紙を別々にして机の上に置きなさい。

受検番号 第 番

♦M4 (126—29)

理科

- 1 次の(1)、(2)の問いに答えなさい。
 - (1) 凸レンズによってできる像について調べるため、次の〔実験〕を行った。

[実験]

- ① 厚紙を立てる台に、大きさ4.0cm の矢印の形をくりぬいた厚紙を取 り付けた。
- ② 図1のように、光源、①の厚紙を立てる台、焦点距離2.0cmの凸レンズ、スクリーンが一直線上に並ぶように机の上に立てた。このとき、厚紙とスクリーンはそれぞれ光軸(凸レンズの軸)と垂直になるようにした。
- ③ 厚紙と光軸の垂直を保ったまま凸 レンズを動かし、厚紙から凸レンズ の中心までの距離が3.0cmになるよ うにした。
- ④ スクリーンと光軸の垂直を保った ままスクリーンを動かし、矢印の形 の像がスクリーンにはっきりと映る ようにした。

〔実験〕で、光源側からスクリーンを観察したとき、スクリーンに映る矢印の形の像の大きさは何cmか。最も適当なものを、次のアからケまでの中から選びなさい。

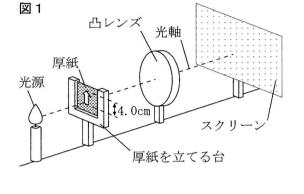
なお、右の図を必要に応じて使ってもよい。

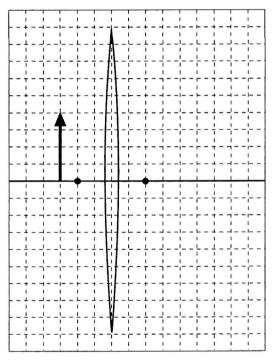
ア 1.0cm

1 2.0cm

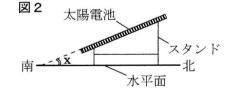
ウ 3.0cm

エ 4.0cm


オ 5.0cm


カ 6.0cm

+ 7.0cm


ク 8.0cm

ケ 9.0cm

(2) 北緯35度のある地点の水平面に太陽光発電設備を設置する。この設備は、太陽電池に対して垂直に光が当たったときに、発電量が最大になる。また、図2のように、スタンドを用いて東西には傾かないようにするとともに、水平面と太陽電池が角度xをなすよう南を低くして設置することができる。

夏至の日の南中時刻に発電量が最大になるように設置するとき、水平面と太陽電池の間の角度 \mathbf{x} として最も適当なものを、次の \mathbf{r} から**コ**までの中から選びなさい。ただし、地球は公転面に垂直な方向に対して地軸を23.4°傾けたまま公転しているとする。

ア 0°

1 5.8 $^{\circ}$

ウ 11.6°

I 23.4°

才 29.2°

カ 31.6°

+ 35.0°

ク 39.2°

ケ 55.0°

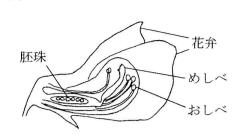
⊐ 58. 4°

- 2 遺伝のしくみについて調べるため、エンドウを用いて次の〔観察1〕と〔観察2〕を行った。
 - 〔観察1〕 ① 丸形の種子をまいて育てたエンドウのめしべに、丸形の種子をまいて育てたエンドウのおしべの花粉をつけた。
 - ② ①でできた種子の形を観察した。

[観察1] の②の結果、できた種子には丸形としわ形の両方があった。

- [観察2] ① [観察1] でできた種子の中から2つの種子を選んだ。
 - ② ①で選んだ一方の種子をまいて育てたエンドウのめしべに、もう一方の種子をまいて育てたエンドウのおしべの花粉をつけた。
 - ③ ②でできた種子の形を観察した。
 - ④ ①で選ぶ2つの種子をさまざまにかえて、②、③と同じことを行った。

表は、〔観察2〕の結果をまとめたものである。


表

	選んだ2つの種子の形	できた種子の形
Α	丸形、 丸形	丸形のみ
В	丸形、 丸形	丸形としわ形
С	丸形、 しわ形	丸形のみ
D	丸形、 しわ形	丸形としわ形
E	しわ形、しわ形	しわ形のみ

次の(1)から(4)までの問いに答えなさい。

- (1) 遺伝に関する次のアから**オ**までの文の中から正しいものを2つ選びなさい。ただし、マーク欄は1行につき1つだけ塗りつぶすこと。
 - ア 遺伝子の本体を染色体という。
 - **イ** 1つの体細胞に含まれる染色体の数は、1つの生殖細胞に含まれる染色体の数の2倍である。
 - ウ 植物には、親の形質と全く同じ形質を受け継ぐ子は存在しない。
 - エ 染色体にはDNAという物質が含まれる。
 - オ 同じエンドウからつくられる花粉は、どれも同じ形質の遺伝子を含んでいる。

(2) 次の文章は、エンドウの花のつくりや受粉について 述べたものである。また、図は、エンドウの花の断面 を模式的に表したものである。文章中の(I)か ら (Ⅲ)までにあてはまる語句の組み合わせとし て最も適当なものを、下のアから**ク**までの中から選び なさい。

図のように、エンドウはおしべとめしべが一緒に花弁に包まれているため、自家受粉が起こりやすい。花粉内の(I) は(I)によってつくられ、めしべの柱頭に花粉がつくと(I)が伸長して受精が起こり、やがて胚珠が発達して種子となる。

义

ア I:精子 Ⅱ:体細胞分裂 Ⅲ:花粉管 イ I:精子 Ⅱ:体細胞分裂 Ⅲ:師管 ウ I:精子 Ⅱ:減数分裂 Ⅲ:花粉管 エ I:精子 Ⅱ:減数分裂 Ⅲ:師管 Ⅱ:体細胞分裂 オ I:精細胞 Ⅲ:花粉管 カ I:精細胞 Ⅱ:体細胞分裂 Ⅲ:師管 キ I:精細胞 Ⅱ:減数分裂 Ⅲ:花粉管 Ⅱ:減数分裂 ク I:精細胞 Ⅲ:師管

(3) 次の文章は〔観察 1〕 について述べたものである。文章中の(I) と(I)と(I)にあてはまるものの組み合わせとして最も適当なものを、下のPからDまでの中から選びなさい。

〔観察 1〕の結果から、しわ形の形質は(I)形質であることがわかる。 また、〔観察 1〕でできた丸形としわ形の種子のうち、丸形の割合はおよそ(II)% であった。

ア I: 顕性 II : 25イ I:顕性 **II**:33 ウ I:顕性 II : 67エ I:顕性 II : 75オ I:潜性 II:25カ I:潜性 II : 33キ I:潜性 II : 67ク I:潜性 II:75

(4) 〔観察2〕の結果から、表のAからEまでの中から、選んだ2つの種子がともに純系であることがわかるものを全て選んで、その組み合わせとして最も適当なものを、次のアからケまでの中から選びなさい。

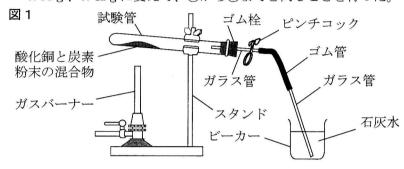
ア E

イ A、E

ウ B、E

I C, E

才 D、E


カ A、C、E

+ A、D、E

ク B、C、E

ケB、D、E

- 3 酸化銅に炭素粉末を加えて加熱したときの化学変化について調べるため、次の〔実験〕を行った。
 - ① 黒色の酸化銅4.00gと乾燥した炭素粉末0.12gをよく混ぜ合わせ、試験管に入れた。
 - ② ①の試験管をスタンドに取り付け、ビーカーに石灰水を入れて、図1のような装置を組み立てた。
 - ③ ガスバーナーに点火し、試験管を十分に加熱して気体を発生させ、この気体をビーカーの石灰水に通して、石灰水のようすを観察した。
 - ④ 気体が発生しなくなってから、ガラス管をビーカーから取り出し、その後、ガス バーナーの火を消してから、ピンチョックでゴム管をとめた。
 - ⑤ 試験管を室温になるまで冷ましてから、試験管内の物質のようすを観察し、その後、 試験管内の物質の質量を測定した。
 - ⑥ 試験管内の物質の一部をろ紙の上に取り出して、この物質を薬さじで強くこすり、 ようすを観察した。
 - ⑦ 酸化銅の質量は4.00gのまま、乾燥した炭素粉末の質量を0.18g、0.24g、0.30g、0.36g、0.42gに変えて、①から⑥までと同じことを行った。

[実験]の③では、石灰水が白くにごった。また、[実験]の⑥では、物質に赤色(赤茶色)の 金属光沢が見られた。

表1は、〔実験〕の結果をまとめたものである。ただし、反応後の試験管の中にある気体の質量は無視できるものとする。

表 1

<u> </u>			Market and the second of the s	2000 per 100 1 100 100 100 100 100 100 100 100		
酸化銅の質量〔g〕	4. 00	4. 00	4. 00	4. 00	4. 00	4. 00
炭素粉末の質量〔g〕	0. 12	0.18	0. 24	0.30	0.36	0.42
反応後の試験管内の 物質の質量〔g〕	3. 68	3. 52	3. 36	3. 20	3. 26	3. 32
反応後の試験管内の 物質のようす	赤色(赤色)を発色の物でである。	赤色 茶色) 黒色の物 質が混ざ っている。	赤色 茶色) 素色の物 質が混ざ っている。	赤色(赤 茶色)の 物質だけ である。	赤色 茶色) 素色の物 関が混ざ っている。	赤色 赤色) 茶色) 黒色の物 質が混ざ っている。

次の(1)から(4)までの問いに答えなさい。

- (1) この〔実験〕において、試験管内で起こった化学変化について説明した文として最も適当なものを、次の**ア**から**カ**までの中から選びなさい。
 - ア 反応した物質は酸化銅のみであり、このとき、酸化銅は還元された。
 - **イ** 反応した物質は酸化銅のみであり、このとき、酸化銅は酸化された。
 - **ウ** 反応した物質は酸化銅と炭素であり、このとき、どちらも還元された。
 - **エ** 反応した物質は酸化銅と炭素であり、このとき、どちらも酸化された。
 - オ 反応した物質は酸化銅と炭素であり、このとき、酸化銅は還元され、炭素は酸化された。
 - **カ** 反応した物質は酸化銅と炭素であり、このとき、酸化銅は酸化され、炭素は還元された。

(2) 次の文章は、〔実験〕の④の操作について説明したものである。文章中の(I)と(II) にあてはまるものとして最も適当なものを、下のアからオまでの中からそれぞれ選びなさい。

[実験]の④で、ガスバーナーの火を消す前に、ガラス管をビーカーから取り出した理由 は、(I) である。また、ピンチコックでゴム管をとめた理由は、(II) である。

- ア 試験管の中で発生した気体を集めるため
- イ 試験管の中で発生した気体を取り除くため
- ウ 試験管の中に空気が入り込むのを防ぐため
- エ 試験管の中に石灰水が流れ込むのを防ぐため
- オ 試験管の中の物質が押し出されることを防ぐため
- (3) 酸化銅の質量を3.60g、炭素粉末の質量を0.24gに変えて、〔実験〕の①から⑥までと同じこ とを行ったとき、反応後の試験管内にある黒い物質の質量として最も適当なものを、次のaから f までの中から選びなさい。また、この黒い物質の化学式として最も適当なものを、次のアから ウまでの中から選びなさい。

a 0.03 g

b 0.04 g

c 0.27 g

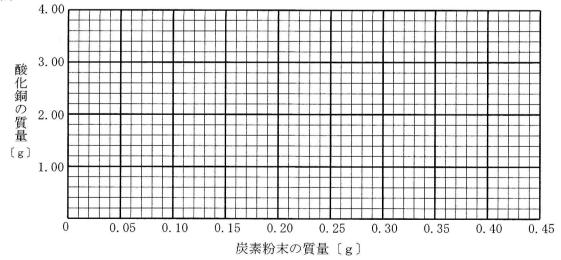
d 0.30 g

e 0.32 g

f 0.40 g

7 C

1 Cu


ウCuO

(4) 酸化銅の質量と炭素粉末の質量を表2のAからFまでのように変えて、〔実験〕の①から⑥ま でと同じことを行った。表2のAからFまでのうち、反応後の試験管の中にある黒い物質が炭素 のみとなる組み合わせとして最も適当なものを、下の**ア**から**ク**までの中から選びなさい。 なお、図2を必要に応じて使ってもよい。

表 2

	A	В	С	D	E	F
酸化銅の質量〔g〕	1.00	1.50	2.00	2.50	3.00	3. 50
炭素粉末の質量〔g〕	0.06	0.14	0. 20	0. 20	0. 25	0. 25

図 2

7 A, C

イ A、F

ウC、D

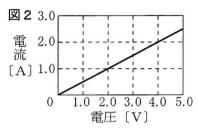
I A, B, C

オ D、E、F

 $A \cup B \cup E \cup F$ $A \cup B \cup C \cup D \cup E$ $A \cup B \cup B \cup C \cup B$

4 電熱線に電流を流したときの発熱について調べるため、抵抗の異なる3本の電熱線A、B、Cと3つの同じ発泡ポリスチレン容器a、b、cを用いて、次の〔実験1〕から〔実験4〕までを行った。ただし、〔実験2〕から〔実験4〕までにおいて、発泡ポリスチレン容器の中にある電熱線で生じた熱は、全て水の温度上昇に使われるものとする。


なお、電熱線Cの抵抗は、電熱線Aの抵抗の2倍であることがわかっている。


- [実験1] ① 図1のように、電源装置、スイッチ、電流計、 電熱線A、電圧計を導線で接続した。
 - ② 回路のスイッチを入れ、電圧計が示す電圧を 0Vから少しずつ変化させながら、電圧と電流 の関係を調べた。
- 図2は、〔実験1〕の結果をグラフに表したものである。
- [実験2] ① 2つの空の発泡ポリスチレン容器 a 、b のそれぞれに、室温で同じ質量の水を入れた。
 - ② 図3のように、電源装置、スイッチ、電熱 線A、電圧計を導線でつなぎ、電熱線Aを発泡 ポリスチレン容器 a の水の中に入れた。
 - ③ 回路のスイッチを入れ、電圧計の目盛りがある値を示すように電源装置を調整した。
 - 発泡ポリスチレン容器aの水の温度を測定し、 すぐにストップウォッチのスタートボタンを押 した。
 - ⑤ 発泡ポリスチレン容器 a の水をかき混ぜなが ら、水の温度を1分ごとに測定した。
 - ⑥ 次に、電熱線Aを電熱線Bに、発泡ポリスチレン容器 a を発泡ポリスチレン容器 b にかえて、②から⑤までと同じことを行った。

ただし、電圧計の目盛りが③と同じ値を示すように電源装置を調整した。

図4は、〔実験2〕の結果をグラフに表したものである。

- [実験3] ① 2つの空の発泡ポリスチレン容器a、cのそれぞれに、室温で[実験2]の①と同じ質量の水を入れた。
 - ② 図5のように、並列につないだ電熱線Aと電 熱線Cを、電源装置、スイッチ、電圧計と導線 でつなぎ、電熱線Aを発泡ポリスチレン容器 a の水の中に、電熱線Cを発泡ポリスチレン容器 c の水の中に入れた。
 - ③ 回路のスイッチを入れ、電圧計の目盛りが 〔実験2〕の③と同じ値を示すように電源装置 を調整した。
 - ④ 発泡ポリスチレン容器 a、cの水の温度をそれ ぞれ測定し、すぐにストップウォッチのスタート ボタンを押した。
 - ⑤ 発泡ポリスチレン容器 a、cの水をかき混ぜなが ら、それぞれの水の温度を1分ごとに測定した。

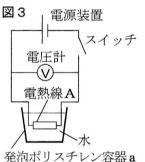
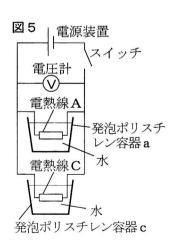
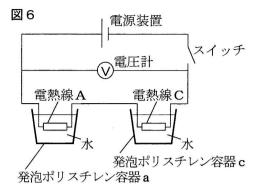




図4 8.0 温 6.0 上 4.0 子レン 容器 a の水 発泡ポリスチレン 発泡ポリスチレン 容器 b の水 0 2 4 6 時間 [分]

- 〔実験 4〕 ① 2つの空の発泡ポリスチレン容器 \mathbf{a} 、 \mathbf{c} のそれぞれに、室温で〔実験 2〕の①と同じ質量の水を入れた。
 - ② 図6のように、直列につないだ電熱 線Aと電熱線Cを、電源装置、スイッ チ、電圧計と導線でつなぎ、電熱線A を発泡ポリスチレン容器aの水の中に、 電熱線Cを発泡ポリスチレン容器cの 水の中に入れた。
 - ③ 回路のスイッチを入れ、電圧計の目 盛りが〔実験2〕の③と同じ値を示す ように電源装置を調整した。

- ④ 発泡ポリスチレン容器 a、cの水の温度をそれぞれ測定し、すぐにストップウォッチのスタートボタンを押した。
- ⑤ 発泡ポリスチレン容器 \mathbf{a} 、 \mathbf{c} の水をかき混ぜながら、それぞれの水の温度を $\mathbf{1}$ 分ごとに測定した。

次の(1)から(4)までの問いに答えなさい。

(1) 〔実験 1〕で用いた電熱線 \mathbf{A} の抵抗は何 Ω か。最も適当なものを、次の \mathbf{P} から \mathbf{J} までの中から選びなさい。

ア 0.25Ω

 $oldsymbol{1}$ 0.50 Ω

ウ 1.0Ω

 \mathbf{I} 2.0 Ω

オ 4.0Ω

(2) 〔実験 2〕の結果から、電熱線Aの抵抗と電熱線Bの抵抗の比として最も適当なものを、次のPからfまでの中から選びなさい。

7 A : B = 1 : 1

A : B = 1 : 2

ウ A:B=1:3

I A : B = 1 : 4

7A: B = 2: 1

カ A:B=2:3

+ A : B = 3 : 1

 $\mathbf{D} \cdot \mathbf{A} : \mathbf{B} = 3 : 2$

ケ A:B=4:1

(3) 次の文章は、〔実験 3〕 について述べたものである。文章中の(I)と(I)にあてはまるものとして最も適当なものを、(I)には下のxからzまでの中から、(I)には下のxからzまでの中からそれぞれ選びなさい。

[実験 3]では、電熱線 A、Cは並列接続であり、電熱線 Cの抵抗が電熱線 Aの抵抗の 2 倍であることから、発泡ポリスチレン容器 a の水の温度と、発泡ポリスチレン容器 c の水の温度の間には、(I)という関係がある。

発泡ポリスチレン容器 a の水の温度が4.0 C上昇するのは、ストップウォッチのスタートボタンを押してから (II) 分後である。

- x 発泡ポリスチレン容器 a の水の温度は、発泡ポリスチレン容器 c の水の温度より高い
- v 発泡ポリスチレン容器 a の水の温度は、発泡ポリスチレン容器 c の水の温度より低い
- **z** 発泡ポリスチレン容器 a の水の温度は、発泡ポリスチレン容器 c の水の温度と同じ

ア 1

1 2

ウ 3

I 4

オ 6

カ 9

+ 12

ク 18

ケ 24

⊐ 27

(4) 〔実験4〕で発泡ポリスチレン容器 a の水の温度が4.0℃上昇するのは、ストップウォッチのスタートボタンを押してから何分後か。最も適当なものを、次のアからコまでの中から選びなさい。

ア 1分後

イ 2分後

ウ 3分後

エ 4分後

オ 6分後

カ 9分後

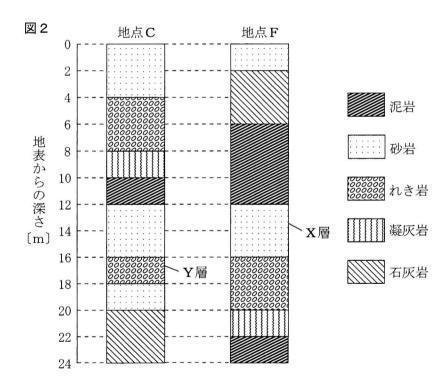
キ 12分後

ク 18分後

ケ 24分後

コ 27分後

5 ある地域で、地点A、B、C、D、E、F、G、Hにおいて地表から深さ24mまでの地層を調査した。地点A、B 、C 、D、E 、F 、G 、Hは、上空から見ると、 $\mathbf{2}$ 1 のように等間隔で一直線上に並んでいる。表は地点A、B 、C 、D 、E 、F 、G 、H の標高をまとめたものである。また、 $\mathbf{2}$ 2 は、地点 \mathbf{C} 、 \mathbf{F} における地層のようすを模式的に表したものである。


図2で示されるそれぞれの地層を調べたところ、地点FのX層からは、シジミの化石が発見され、このシジミの化石を含む砂岩の層は地点Cの地層中にも存在していた。また、地点CのY層には、石灰岩かチャートのいずれかのれきが含まれていた。

ただし、この地域の地層は互いに平行に重なっており、上下の逆転や断層はなく、ある方向に一定の割合で傾いているものとする。また、この地域では、火山の噴火が過去に1回だけ起こったことがわかっている。

表

地点	Α	В	С	D	Е	F	G	Н
標高〔m〕	60	62	64	66	68	70	72	74

次の(1)から(4)までの問いに答えなさい。

- (1) X層で発見されたシジミの化石を採集して手に持ち、ルーペを用いて観察した。このときの手 順について述べた文として最も適当なものを、次のアからエまでの中から選びなさい。
 - **ア** ルーペを化石に近づけ、ルーペと化石を一緒に前後に動かしてピントを合わせる。
 - **イ** ルーペを化石に近づけ、ルーペだけを前後に動かしてピントを合わせる。
 - **ウ** ルーペを目に近づけ、ルーペだけを前後に動かしてピントを合わせる。
 - エ ルーペを目に近づけ、化石だけを前後に動かしてピントを合わせる。
- (2) 次の文章は、X層で発見されたシジミの化石とその地層について述べたものである。文章中の (I)から(Ⅲ)までにあてはまる語句として最も適当なものを、(I)には下の aまたはbから、(Π)には下のxからzまでの中から、(Π)には下のTから**ウ**まで の中からそれぞれ選びなさい。

シジミの化石から、地層が堆積した当時の環境を推定することができる。このような化 石を(I) 化石という。X層からシジミの化石が発見されたことから、X層が堆積し た当時の環境が (Ⅱ) であったことがわかる。

また、地点Cの地表から24mまでの地層を調べると、X層で発見されたシジミを含む砂 岩の層は(Ⅲ)。

a 示相

b 示準

x 深い海底

y 湖や河口

z 陸地

- ア 地点Cの地表から4mの深さまでの層である
- イ 地点Cの12mの深さから16mの深さまでの層である
- ウ 地点Cの18mの深さから20mの深さまでの層である
- (3) 次の文章は、地点CのY層に含まれるれきを採集し、このれきが石灰岩とチャートのどちらか を調べるために行った実験と結果について述べたものである。文章中の(I)にあてはまる 気体と(II)にあてはまる語句として最も適当なものを、(I)には下のaからdまで の中から、(\mathbf{II})には下の \mathbf{r} または \mathbf{r} からそれぞれ選びなさい。

採集したれきにうすい塩酸を数滴たらし、れきのようすを観察したところ、あわが出た。 このことから、このれきは石灰岩であるとわかった。なお、このとき発生した気体は (I) である。

また、採集したれきの表面をくぎで力を入れて強くこすった後、このれきの表面を観察 すると、(**Ⅱ**)。

a 酸素

b 水素

c 二酸化炭素 d 塩素

ア 傷がついていた

イ 傷はついていなかった

(4) 標高57mの位置に凝灰岩が含まれるのは、地点A、B、C、D、E、F、G、Hのどれか。最 も適当なものを次のアからクまでの中から選びなさい。

ア 地点A

イ 地点B

ウ 地点C

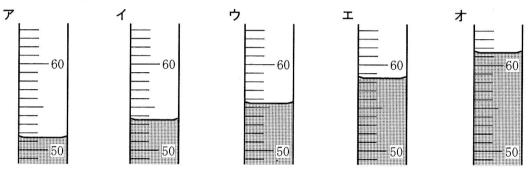
エ 地点D

才 地点E

カ 地点F

キ 地点G

ク 地点H


- **6** 次の(1)、(2)の問いに答えなさい。
 - (1) 金属柱A、Bの密度を求めるため、次の〔実験〕を行った。

〔実験〕 ① 金属柱A、Bの質量を測定した。

- ② 金属柱A、Bをそれぞれ糸でつるした。
- ③ メスシリンダーに水を50.0 cm^3 入れ、糸でつるした金属柱Aの全体を水に沈めて、 体積を測定した。
- ④ 金属柱Aを金属柱Bにかえて、③と同じことをした。

〔実験〕の結果、金属柱 \mathbf{A} は質量が $10.00\,\mathrm{g}$ 、体積 $3.7\,\mathrm{cm}^3$ であり、金属柱 \mathbf{B} は質量が $15.00\,\mathrm{g}$ であった。また、金属柱 \mathbf{A} 、 \mathbf{B} の密度が同じであることがわかった。

金属柱Bの体積を測定したときの水面とメスシリンダーの目盛りのようすを模式的に表した図として最も適当なものを、次のアから**オ**までの中から選びなさい。ただし、糸の体積は無視できるものとする。

(2) 次の I からIVまでの文は、図のような顕微鏡の使い方について説明したものである。次の I からIVまでの文の中から正しいものを全て選んで、その組み合わせとして最も適当なものを、下のアからコまでの中から選びなさい。

- I 視野の右上に見えた対象物を視野の中心に動かすときは、プレパラートを左下に動かす。
- Ⅱ 観察する対象の大きさがわかっていないときは、初めは高倍率で観察する。
- Ⅲ 接眼レンズの倍率をかえずに、レボルバーを回して対物レンズの倍率を10倍から40倍にか えると、対物レンズとプレパラートの間の距離は短くなる。
- IV ピントを合わせるときは、接眼レンズをのぞきながら対物レンズとプレパラートを少しず つ遠ざける。

アI、Ⅱ

イ I、II

ウI、IV

I II III

オ II、IV

カ III、IV

+ I、Ⅱ、Ⅲ

ク I、II、IV

ケ I、II、IV

□ II, III, IV

(問題はこれで終わりです。)

令和7年学力検査 解答用紙 第4時限

理 科

【解答上の注意】

- 1 HB以上の濃さの黒鉛筆(シャープペンシルも可)を使用すること。
- 2 マーク欄は、下の例を参考にして塗りつぶすこと。
- 3 訂正する場合は、消しゴムできれいに消し、消しくずを残さないこと。
- 4 解答用紙は、汚したり、折り曲げたりしないこと。

	良い例	
THE PERSON NAMED IN COLUMN 2 I		

			悪	い例		
①小 ;	さい	●上だけ	① 線	()丸囲み	※バツ	() うすい

1	(1)	0	(1)	(1)	\mathcal{F}	\bigcirc	(1)	0	9	
l	(2)	0	(1)	0	7	\bigcirc	(#)	9	9	

	(1)	7	(1)	0	(MILETONICS OF ACCOM	umimuutm
	(1)	7	(1)	(1)	(
2	(2)	0	(1)	0	7	(H)	(#)	9		
	(3)	7	0	(1)	7	(1)	(‡)	9		
	(4)	7	0	0	7	(\mathcal{H})	(#)	9	9	

	(1)	7	(1)	(1)		7	\oplus			
STATE OF THE STATE	(2)	I	0	(1)	0		7				
2		П	7	(1)	0		7				
3	(2)	質量	(a)	6	0	(d)	(e)	(f)			
	(3)	化学式	7	(1)	0						
	(4	4)	9	1	0		1	\bigcirc	(#)	9	

	(1)	7	(1)	0		7	W-Almanda no		Marie Carl Carl Sanger		
	(2)	0	(1)	0		7	\oplus	(‡)	9	9	
4	(2) I	\otimes	\bigcirc	(2)							
	(3) I	0	1	0		7	\bigcirc	(#)	9	9	9
	(4)	7	(1)	(1)	(I)	1	\oplus	(#)	9	0	

氏 名

	受	検 番	号	
0	0	0	0	0
1)	1	1)	1)	1)
2	2	2	2	2
3	3	3	3	3
4	4	4	4	4
(5)	(5)	(5)	(5)	(5)
6	6	6	6	6
7	7	7	7	7
8	8	8	8	8
9	9	9	9	9

No. Committee of the	(1)	0	1	0						
		I	(a)	6							
	(2)	II	\otimes	\bigcirc	(Z)						
5		Ш	0	1	0						
	(0)	I	(a)	(b)	(c)	(d)					
	(3)	П	0	(1)							
	(4	.)	0	(1)	0	(1)	7	(H)	(#)	9	

6	(1)	0	0	0	\bigcirc					
	(2)	0	(1)	0	\mathcal{F}	\bigcirc	(9	9	

令和7年学力検査 全日制課程 一般選抜

第4時限

理科正答

問題番号		酉己	点	正答	町占しの沿辛東西
大問	小 問	大問	小問	上 谷	配点上の注意事項
1	(1)	2	1	<i>þ</i>	
	(2)	点	1	ウ	
	(1)		1	イ、エ	二つともできて1点。
2	(2)	4	1	+	
	(3)	点	1	þ	
	(4)		1	工	
	(1)		1	才	
3	(2)	5	1	Ι:エ Π:ウ	二つともできて1点。
	(3)	点	1	質量: f 化学式:ウ	二つともできて 1 点。
	(4)		2	+	
4	(1)		1	I	
	(2)	4	1	工	
	(3)	点	1	I:x II:ウ	二つともできて1点。
	(4)		1	П	
5	(1)		1	工	
	(2)	5	1	I:a II:y III:ア	全てできて1点。
	(3)	点	1	I:c II:ア	二つともできて1点。
	(4)		2	1	
6	(1)	2	1	ウ	
	(2)	点	1	カ	
合 計		22	点		

